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Today: Fundamental and structure
theorems

Ex a field K .
We'll need a

valued field extension

This is LIK with valuation vak:(→ IRU *

with vak (a) = Val (a) for a c- K .
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Fix a valued field. K . Let F- inVal ≤ R
.

Structure theorem let ✗ c-(E)^ be an
irreducible variety of dim d- Then
✗+Xuxa trap (X) is the support ofa
Xi,✗2proper
subvariety pure balanced f- national

polyhedral complex that is - connected

through codimension - one .

Rest of lecture make sense of this !
Credits? Bieri -Groves

, BJSST,Cartwright - Payne,
rn-Yu, CEHMIMRWY
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Fix a valued field. K . Let F- inVal ≤ R
.

Structure theorem let ✗ c-(E)^ be an
irreducible variety of dim d- Then
✗+Xuxa trap (X) is the support ofa
✗
"✗2proper
subvariety pure balanced f- national

polyhedral complex that is - connected
through codimension - one .
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Defn A polyhedron P SIR
"

is a

set of the form

{ ✗ c- 112? Ax ≤ b- } = { IER? a-±=≤6 ,
dxn

*Rd 92# €62 }
matrix a- id#Ebd

" intersection of closed half spaces
"

eg ☒ Her? (I -9)±≤ (9)
a polytope is a banded polyhedron 1¥
P is f-national if A c-

^ rational

b- c- ☒



Defn The linear span of P is

span (I-¥ :*,g- c-P) .

eg span / o-•)
=

-

The dimension of P is the dimension
of its linear span _

dim C-) = I



Defn The linear span of P is

span (I-¥ : ±,g- c-P) .

eg

The dimension of P is the dimension
of its linear span _

Defn The face of P with
(inner normal

vector w_ is

facewcp)={✗c-P: iv.✗≤WyHye
P }
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☐efn A polyhedral complex E is a

inIRN -

finite collection of polyhedra , for which
the intersection of any

two is a face of

each (or empty) ✓ ✗

☒☒ ✓Li ✓ ☒
☒ ¥- - *
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If all polyhedra are c⇒s , E is afan
{ ± :A±≤0}÷¥¥



Fix a valued field. K . Let F- inVal ≤ R
.

Structure theorem let ✗ c-(E)^ be an
irreducible variety of dim d- Then
✗+Xuxa trap (X) is the support ofa
Xi,✗2proper
subvariety pure balanced f- national

polyhedral complex that is d- connected
through codimension - one .



DefnThe support of a polyhedral complex
is the union of all polyhedra as a

7

Subset of 112?

Two polyhedral complexes can have the same
support

es ☒⇒ _ '

Defn a polyhedral complex E is pure
if every maximal polyhedron in E Curt
inclusion) ↑has the same dimension. 1¥" facet"



Fix a valued field. K . Let F- inVal ≤ R
.

Structure theorem let ✗ c-(E)^ be an
irreducible variety of dim d- Then
✗+Xuxa trap (X) is the support ofa
Xi,✗2proper
subvariety pure balanced f- national

polyhedral complex that is d- connected
through codimension - one .



Balancing
A weighting on a pure polyhedral complex
is an assignment of an integer to each
facet of E.

☐efn A one -dimensional weighted
rational polyhedral far is balanced if

Emi Ui =0 where mi is the weight on the
ith
ray

and Ui is the first lattice Pt
on the

ten.
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☐efn A one -dimensional weighted
rational polyhedral far is balanced if

Emi Ui =0 where mi is the weight on the
ith ray and Ui is

the first lattice Pt on the

ith ray.
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☐efn A pure
d-dimensional f- rational

polyhedral complex { is balanced if
,

for every @-7
- dimensional polyhedron

P in the complex, the followin
one-dimensional rational fan is balanced ?

Let R , >Ps be The d-dimensional polytopes
in E containing P as a fax.ie#.rel-pnniewnXe-i-Znfor the primitive inner

normal . Let ☐ be the one
- dimensional

fan in 1%2*1
"" rays ¥¥;#Pi\AA_p with weight weight(A). {xyi :>≥ o}
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Defn A pure
d- dimensional polyhedral

complex is connected through c-dimension
one if the facet - ridge hypergraph
is connected T

vertex for each d- dim polyhedron
hyperedge for each @-11-dim

polyhedron
£

4¥
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Defn A pure
d- dimensional polyhedral

complex is connected through c-dimension
one if the facet - ridge hypergraph
is connected.

It is d-
connected through codimension

one if this hypergraph is d- connected
(removing d-

17 vertices e associated

hypoedooes leaves the hypergraph connected.%
£

'•¥ ←
connected = 1- connected

0 but not 2- connected.
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Fix a valued field. K . Let F- inVal ≤ R
.

Structure theorem let ✗ c-(E)^ be an
irreducible variety of dim d- Then
✗+Xuxa trap (X) is the support ofa
Xi,✗2proper
subvariety pure balanced f- national

☆

polyhedral complex that is ¢1- connected
through codimension - one . ↑

d- dinUnreality
space E)
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↳ c- linearityspace (E)
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×




